Here,
#I=int(x+3)ln^2(x+3)dx#
#I=int(x+3)[ln(x+3)]^2dx#
We take,
#ln(x+3)=t=>x+3=e^t=>dx=e^tdt#
So,
#I=int(e^t)[t]^2e^tdt#
#:.I=intt^2*e^(2t)dt#
#"Using "color(blue)"Integration by parts : "#
#I=t^2inte^(2t)dt-int(d/(dt)(t^2) xx inte^(2t)dt)dt#
#=t^2*(e^(2t))/2-int 2t*(e^(2t))/2dt#
#=t^2*(e^(2t))/2-int t*(e^(2t))dt#
Again, #"using "color(blue)"Integration by parts : "#in second integral,
#I=t^2*(e^(2t))/2-[t*(e^(2t))/2-int(1)(e^(2t)/2)dt]#
#=t^2*(e^(2t))/2-t*e^(2t)/2+1/2inte^(2t)dt#
#=t^2*(e^(2t))/2-t*e^(2t)/2+1/2*e^(2t)/2+c#
#:.I=e^(2t)/4[2t^2-2t+1]+c#
#=>I=(x+3)^2/4[2ln^2(x+3)-2ln(x+3)+1]+c#
Note:
#ln(x+3)=t#
#=>[ln(x+3)]^2=t^2#
#=>ln^2(x+3)=t^2#
Also,
#(i)ln^2(x+3)=[ln(x+3)]^2=ln(x+3)xxln(x+3),and#
#(ii)ln(x+3)^2=2ln(x+3)#
#=>ln^2(x+3)!=ln(x+3)^2#