What is lim_(x->-oo) x^2/(x^2-7) ? Calculus Limits Determining Limits Algebraically 1 Answer VNVDVI May 11, 2018 1 Explanation: We can divide both numerator and denominator by x^2: lim_(x->-oo)((cancel(x^2))/(cancel(x^2)))/(cancel(x^2)/cancel(x^2)-7/x^2) =lim_(x->-oo)1/(1-7/x^2)=1/(1-7/(-oo)^2)=1 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 2532 views around the world You can reuse this answer Creative Commons License