If f(x)=lim of 1/(1+nsin^2pix) as n approaches to infinity,find the value of f(x) for all real values of x?

1 Answer
May 11, 2018

#f(x) = \mathcal(I)(ZZ)# - a function that returns 1 when #x in ZZ#, 0 otherwise.

Explanation:

If #x in ZZ#, #sin^2(pi x)=0# and so

#f(x) = lim_{n to oo} 1/(1+n sin^2(pi x))=lim_{n to oo} 1/(1+n times 0)#
#qquad = lim_{n to oo} 1/(1+0) = 1#

If #x notin ZZ#, #sin^2(pi x) > 0# and so

#f(x) = lim_{n to oo} 1/(1+n sin^2(pi x))=lim_{n to oo} (1/n)/(1/n+sin^2(pi x) )#
# qquad = 0/sin^2(pi x) = 0#