How do you solve #x^{2} + 2x > 35#?

1 Answer
May 12, 2018

The solution is #x in (-oo, -7) uu(5, +oo)#

Explanation:

The inequality is

#x^2+2x>35#

#x^2+2x-35>0#

Factorise,

#(x-5)(x+7)>0#

Let #f(x)=(x-5)(x+7)#

Build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-7##color(white)(aaaa)##5##color(white)(aaaaaaaa)##+oo#

#color(white)(aaaa)##x+7##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##color(white)(a)##+#

#color(white)(aaaa)##x-5##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##color(white)(a)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##color(white)(a)##+#

Therefore,

#f(x)>0# when # x in (-oo, -7) uu(5, +oo)#

graph{x^2+2x-35 [-52.25, 51.85, -39.94, 12.06]}