The inequality is
#x^2+2x>35#
#x^2+2x-35>0#
Factorise,
#(x-5)(x+7)>0#
Let #f(x)=(x-5)(x+7)#
Build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-7##color(white)(aaaa)##5##color(white)(aaaaaaaa)##+oo#
#color(white)(aaaa)##x+7##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##color(white)(a)##+#
#color(white)(aaaa)##x-5##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##color(white)(a)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##color(white)(a)##+#
Therefore,
#f(x)>0# when # x in (-oo, -7) uu(5, +oo)#
graph{x^2+2x-35 [-52.25, 51.85, -39.94, 12.06]}