How do you integrate #int x arcsec x # using integration by parts?
2 Answers
Explanation:
Clearly, you must need to know
So let
-
#sec y = x# -
#(sec y = x)^' implies sec y \ tan y \ y' = 1# -
#implies y' = 1/(sec y \ tan y) = 1/(x sqrt(x^2-1)) color(red)(= (arcsec(x))^') #
Next is IBP:
Given that:
Then:
# int \ x \ "arcsec" \ x \ dx = 1/2x^2 \ "arcsec" \ x - 1/2 sqrt(x^2-1) + c #
Explanation:
We seek:
# I = int \ x \ "arcsec" \ x \ dx #
We can then apply Integration By Parts:
Let
# { (u,="arcsec" \ x, => (du)/dx,=1/(xsqrt(x^2-1))), ((dv)/dx,=x, => v,=1/2x^2 ) :}#
Then plugging into the IBP formula:
# int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx #
We have:
# int \ ("arcsec" \ x)(x) \ dx = ("arcsec" \ x)(1/2x^2) - int \ (1/2x^2)(1/(xsqrt(x^2-1))) \ dx #
# I = 1/2x^2 \ "arcsec" \ x - 1/2 \ int \ x/(sqrt(x^2-1)) \ dx #
For the integral IBP has introduced, we can perform a substitution, Let:
# u = x^2-1 => (du)/dx = 2x #
And if we substitute this into the integral we get:
# int \ x/(sqrt(x^2-1)) = int \ (1/2)/sqrt(u) \ du #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 1/2 \ int \ u^(-1/2) \ du #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 1/2 \ (u^(1/2))/(1/2) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = sqrt(u) #
And restoration of the substitution gives us:
# int \ x/(sqrt(x^2-1)) = sqrt(x^2-1) #
And combining our results, we get:
# I = 1/2x^2 \ "arcsec" \ x - 1/2 sqrt(x^2-1) + c #