What is the x?

enter image source here

3 Answers
May 14, 2018

#x=32^@#

Explanation:

Triangles AEB and CEB are congruent as AE=EC, BE is common and # AhatBE=ChatBE#. So #BhatCE=58^@#.

If AD is parallel to BC then #DhatAC and BhatCE# are alternate angles and are equal. #BhatCE=DhatAC=58^@#.

Triangle DAC has #90^@ + 58^@# so #x=32^@#

May 14, 2018

#x=32^@#.

Explanation:

#/_ABE=/_CBE............................................."[Given]"#.

#:. BE# bisects #/_ABC" in "DeltaABC#.

Therefore, from Geometry, we know that,

#|AE|/|EC|=|AB|/|BC|...........(star)#.

But, # |AE|=|EC|......................................."[Given]"#.

#:. (star) rArr |AB|=|BC|#.

#:. /_ACB=/_BAC=58^@......(starstar)#.

Now, #AD||BC#, and #AC# is transverse

#:. /_DAC=/_ACB..."[Pair of Angles]"=58^@......[because, (starstar)]#.

Finally, in right-#DeltaADC#,

#/_ACD=180^@-{/_ADC+/_DAC}=180^@-{90^@+58^@}#.

# rArr x=/_ACD=32^@#.

May 14, 2018

#x=32^@#

Explanation:

#"since BE bisects AC then it is an altitude of "triangleABC#

#"and because "angleABE=angleCBE#

#"then "triangleABC" is isosceles"#

#rArrangleBCA=angleBAC=58^@tocolor(blue)"base angles"#

#rArrangleCAD=angleBCA=58^@tocolor(blue)"alternate angles"#

#"using sum of angles in a triangle "=180^@#

#rArrangleACD=x=180^@-(90+58)^@=32^@#