If #y= sinx/ x^2#, find #dy/dx# and #(d^2y)/(dx^2)#. Then prove that #x^2 (d^2y)/(dx^2) + 4x dy/dx + (x^2 + 2) y = 0# ?

1 Answer
May 14, 2018

We seek to show that:

# x^2 (d^2y)/(dx^2) + 4x dy/dx + (x^2 + 2) y = 0 # where #y= sinx/x^2#

Using the quotient rule then differentiating #y= sinx/x^2# wrt #x# we have:

# dy/dx = { (x^2)(cosx)-(2x)(sinx) } / (x^2)^2 #
# \ \ \ \ \ \ = (xcosx-2sinx)/x^3 #

And differentiating a second time, we have:

# (d^2y)/(dx^2) = { (x^3)(-xsinx+cosx-2cosx) - (3x^2)(xcosx-2sinx) } / (x^3)^2 #

# \ \ \ \ \ \ \ = { -x^2sinx+xcosx-2xcosx - 3xcosx+6sinx) } / (x^4) #

# \ \ \ \ \ \ \ = ( -x^2sinx-4xcosx +6sinx ) / (x^4) #

And so, considering the LHS of the given expression:

# LHS = x^2 (d^2y)/(dx^2) + 4x dy/dx + (x^2 + 2) y #

# \ \ \ \ \ \ \ \ = x^2 {( -x^2sinx-4xcosx +6sinx ) / (x^4)} #
# \ \ \ \ \ \ \ \ \ \ \ \ + 4x {(xcosx-2sinx)/x^3} #
# \ \ \ \ \ \ \ \ \ \ \ \ + (x^2 + 2) {sinx/x^2} #

# \ \ \ \ \ \ \ \ = {( -x^2sinx-4xcosx +6sinx ) / (x^2)} #
# \ \ \ \ \ \ \ \ \ \ \ \ + 4 {(xcosx-2sinx)/x^2} #
# \ \ \ \ \ \ \ \ \ \ \ \ + (x^2 + 2) {sinx/x^2} #

# \ \ \ \ \ \ \ \ = 1/x^2 {-x^2sinx-4xcosx +6sinx + 4xcosx-8sinx + (x^2 + 2)sinx} #

# \ \ \ \ \ \ \ \ = 0 \ \ \ # QED