How do you use synthetic division to divide x^3 + 2x^2 - 2x + 24x3+2x22x+24 by x+4x+4?

2 Answers
May 18, 2018

frac{x^3 + 2x^2 - 2x + 24}{x + 4} = x^2 - 2x + 6x3+2x22x+24x+4=x22x+6

Explanation:

Divide x^3x3 by x + 4x+4
Quotient = x^2=x2
Remainder = x^3 + 2x^2 - 2x + 24 - x^3 - 4 x ^2=x3+2x22x+24x34x2
Remainder = - 2x^2 - 2x + 24=2x22x+24

Divide -2x^22x2 by x + 4x+4
Quotient = -2x=2x
Remainder = - 2x^2 - 2x + 24 + 2x^2 + 8x=2x22x+24+2x2+8x
Remainder = 6x + 24=6x+24

Divide 6x6x by x + 4x+4
Quotient =6=6
Remainder = 0=0

May 18, 2018

Synthetic division gives: x^2-2x+6x22x+6

Process shown in detail

Explanation:

Given: (x^3+2x^2-2x+24)/(x+4)x3+2x22x+24x+4

Consider the denominator x+4x+4

Set x+4=0 =>color(red)(x=-4)x+4=0x=4

Now we construct the coefficient manipulation.

color(white)("dddd") x^3+2x^2-2x+24ddddx3+2x22x+24
color(white)("ddd")darrcolor(white)("d.d") darrcolor(white)("ddd")darrcolor(white)("ddd")darrdddd.ddddddd

color(red)(-4)|bar(1color(white)("ddd")2color(white)("ddd")-2color(white)("ddd")244¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1ddd2ddd2ddd24

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bring down the first value of color(magenta)(1)1

color(red)(-4)|bar(1color(white)("ddd")2color(white)("ddd")-2color(white)("ddd")244¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1ddd2ddd2ddd24
color(white)("d..d")ul(|color(magenta)(darr )
color(white)("dddd")color(magenta)(1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-4xxcolor(magenta)(1)=color(blue)(-4)
Place the color(blue)(-4) under the 2

color(red)(-4)|bar(1color(white)("ddd")2color(white)("ddd")-2color(white)("ddd")24
color(white)("d..d")ul(|color(magenta)(darr )color(white)("d")color(blue)(-4) )
color(white)("dddd")color(magenta)(1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add the 2 and the color(blue)(-4)

color(red)(-4)|bar(1color(white)("ddd")2color(white)("ddd")-2color(white)("ddd")24
color(white)("d..d")ul(|color(magenta)(darr )color(white)("d")color(blue)(-4) )
color(white)("dddd")color(magenta)(1)color(white)("d")-2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(red)(-4)xx" the new "-2=+8
Place the -8 under the -2

color(red)(-4)|bar(1color(white)("dddd")2color(white)("ddd")-2color(white)("ddd")24
color(white)("d..d")ul(|darr color(white)("d")-4color(white)("ddddd")8 )
color(white)("dddd")1color(white)("dd")-2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add the -2" and the "8

color(red)(-4)|bar(1color(white)("dddd")2color(white)("ddd")-2color(white)("ddd")24
color(white)("d..d")ul(|darr color(white)("d")-4color(white)("ddddd")8 )
color(white)("dddd")1color(white)("dd")-2color(white)("ddddd")6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(red)(-4)xx "the new "6 = -24
Place the -24 under the existing +24
Add and you get the 0 so it is an exact division. No remainder.

color(red)(-4)|bar(1color(white)("dddd")2color(white)("ddd")-2color(white)("ddd")24
color(white)("d..d")ul(|darr color(white)("d")-4color(white)("ddddd")8color(white)("ddd")24 )
color(white)("dddd")1color(white)("dd")-2color(white)("ddddd")6color(white)("ddd")0
color(white)("ddd.")darrcolor(white)("ddd")darrcolor(white)("dddd")darr

color(white)("dddd")x^2color(white)("d")-2xcolor(white)("dd")+6