How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ?

2 Answers
May 19, 2018

#\frac{1}{2}#

Explanation:

The limit presents an undefined form #0/0#. In this case, you may use de l'hospital theorem, that states

#lim \frac {f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}#

The derivative of the numerator is

#\frac{1}{2sqrt(1+h)}#

While the derivative of the denominator is simply #1#.

So,

#\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} \frac{\frac{1}{2sqrt(1+h)}}{1} =\lim_{x\to 0} \frac{1}{2sqrt(1+h)}#

And thus simply

#\frac{1}{2sqrt(1)}=\frac{1}{2}#

May 19, 2018

# = 1/2 #

Explanation:

If you are unaware of l'hopitals rule...

Use:

#(1+x)^n = 1 + nx + (n(n-1))/(2!) x^2 + ... #

#=> (1 + h)^(1/2) = 1 + 1/2h - 1/8 h^2 + ... #

#=> lim_( h to 0) ((1 + 1/2 h - 1/8h^2 + ...) - 1 )/ h #

#=> lim_( h to 0) ( 1/2 h - 1/8h^2 + ... )/ h #

#=> lim_( h to 0) ( 1/2 - 1/8 h + ... ) #

# = 1/2 #