Step 1) Solve each equation for #8x#:
#8x - 2y = -4#
#8x - 2y + color(red)(2y) = -4 + color(red)(2y)#
#8x - 0 = -4 + 2y#
#8x = -4 + 2y#
#2x - 3y = 5#
#color(red)(4)(2x - 3y) = color(red)(4) xx 5#
#(color(red)(4) xx 2x) - (color(red)(4) xx 3y) = 20#
#8x - 12y = 20#
#8x - 12y + color(red)(12y) = 20 + color(red)(12y)#
#8x - 0 = 20 + 12y#
#8x = 20 + 12y#
Step 2) Because the left side of both equations are the same we can equate the right side of both equations and solve for #y#:
#-4 + 2y = 20 + 12y#
#-4 - color(blue)(20) + 2y - color(red)(2y) = 20 - color(blue)(20) + 12y - color(red)(2y)#
#-24 + 0 = 0 + (12 - color(red)(2))y#
#-24= 10y#
#-24/color(red)(10)= (10y)/color(red)(10)#
#-12/5 = (color(red)(cancel(color(black)(10)))y)/cancel(color(red)(10))#
#-12/5 = y#
#y= -12/5#
Step 3) Substitute #-12/5# for #y# in either of the equations in Step 1 and calculate #x#:
#8x = -4 + 2y# becomes:
#8x = -4 + (2 xx -12/5)#
#8x = -4 + (-24/5)#
#8x = -4 - 24/5#
#8x = (5/5 xx -4) - 24/5#
#8x = -20/5 - 24/5#
#8x = -44/5#
#8x xx 1/8 = -44/5 xx 1/8#
#8/8x = -44/40#
#x = -11/10#
The Solution Is:
#x = -11/10# and #y= -12/5#
Or
#(-11/10, -12/5)#