How much gram of urea dissolved in 100 gm of water to create a difference of 105°C between freezing point and boiling point?

2 Answers
May 23, 2018

Consider urea,

puu.sh

Recall,

#DeltaT_"b" = iK_"b"m#

We need the boiling point to be #0+105°"C" = 105°"C"#, thus, #DeltaT_"b" = 5°"C"#

#i = 1#, urea won't measurably dissociate in water, and

#K_"b" = (0.512°"C")/m#

Hence, we need,

#DeltaT_"b" = iK_"b"n/m_(H_2O)#

#=> n = (DeltaT_"b" * m_(H_2O))/(iK_"b") approx 0.977"mol" * (60.06"g")/"mol" approx 58.7"g"#

of urea dissolved in that volume of water to raise the boiling point by #5°"C"#.

May 23, 2018

You must use 13 g of urea.

Explanation:

For pure water, the difference between the boiling point and freezing point
is 100.00 °C.

The added urea will simultaneously raise the boiling point and lower the freezing point, so

#"Boiling point elevation + freezing point depression = 5 °C"#

The formula for boiling point elevation #ΔT_"b"# is

#color(blue)(bar(ul(|color(white)(a/a)ΔT_"b" = iK_"b"bcolor(white)(a/a)|)))" "#

where

  • #i# is the van't Hoff #i# factor
  • #K_"b"# is the molal boiling point elevation constant
  • #b# is the molal concentration of the solution

The formula for freezing point depression #ΔT_"f"# is

#color(blue)(bar(ul(|color(white)(a/a)ΔT_"f" = iK_"f"bcolor(white)(a/a)|)))" "#

where

  • #K_"b"# is the molal boiling point elevation constant

Then,

#ΔT_text(b) + ΔT_text(f) = iK_text(b)b + iK_text(f)b = "5 °C"#

#i(K_text(b) + K_text(f))b = "5 °C"#

In this problem,

#i color(white)(m)= 1#, because urea is a nonelectrolyte
#K_text(b) = "0.515 °C·kg·mol"^"-1"#
#K_text(f)color(white)(l) = "1.853 °C kg·mol"^"-1"#

#1("0.515 °C·kg·mol"^"-1" + "1.853 °C·kg·mol"^"-1")b#

#= 2.368b color(red)(cancel(color(black)("°C")))"·kg·mol"^"-1" = 5 color(red)(cancel(color(black)("°C")))#

#b = 5/("2.368 kg·mol"^"-1") = "2.1 mol/kg"#

#"Moles of urea" = 0.100 color(red)(cancel(color(black)("kg"))) × "2.1 mol"/(1 color(red)(cancel(color(black)("kg")))) = "0.21 mol"#

#"Mass of urea" = 0.21 color(red)(cancel(color(black)("mol urea"))) × "60.06 g urea"/(1 color(red)(cancel(color(black)("mol urea")))) = "13 g urea"#

Check:

#ΔT_text(b) = "0.515 °C"·color(red)(cancel(color(black)("kg·mol"^"-1"))) × 2.1 color(red)(cancel(color(black)("mol·kg"^"-1"))) = "1.1 °C"#

#ΔT_text(f) = "1.853 °C"·color(red)(cancel(color(black)("kg·mol"^"-1"))) × 2.1 color(red)(cancel(color(black)("mol·kg"^"-1"))) = "3.9 °C"#

#ΔT_text(b) + ΔT_text(f) = "1.1 °C + 3.9 °C = 5 °C"#

It checks!