If #g(n)=3n^3+4n# and #f(n)=4n+2#, what is #(g-f)(-n)#?

1 Answer
May 26, 2018

#(g-f)(-n)=-3n^3-2#

Explanation:

#"to evaluate substitute "n=-n" into "(g-f)(n)#

#(g-f)(n)=g(n)-f(n)#

#color(white)((g-f)(n))=3n^3+4n-(4n+2)#

#color(white)((g-f)(n))=3n^3cancel(+4n)cancel(-4n)-2#

#color(white)((g-f)(n))=3n^3-2#

#(g-f)(color(red)(-n))=3(color(red)(-n))^3-2#

#color(white)(xxxxxxxx)=-3n^3-2#