#f(x)=x^3e^x# , #x##in##RR#
We notice that #f(0)=0#
#f'(x)=(x^3e^x)'=3x^2e^x+x^3e^x=x^2e^x(3+x)#
#f'(x)=0# #<=># #(x=0,x=-3)#
- When #x##in##(-oo,-3)# for example for #x=-4# we get
#f'(-4)=-16/e^4<0#
- When #x##in##(-3,0)# for example for #x=-2# we get
#f'(-2)=4/e^2>0#
- When #x##in##(0,+oo)# for example for #x=1# we get
#f'(1)=4e>0#
#f# is continuous in #(-oo,-3]# and #f'(x)<0# when #x##in##(-oo,-3)# so #f# is strictly decreasing in #(-oo,-3]#
#f# is continuous in #[-3,0]# and #f'(x)>0# when #x##in##(-3,0)# so #f# is strictly increasing in #[-3,0]#
#f# is continuous in #[0,+oo)# and #f'(x)>0# when #x##in##(0,+oo)# so #f# is strictly increasing in #[0,+oo)#
#f# is increasing in #[-3,0)uu(0,+oo)# and #f# is continuous at #x=0# , hence #f# is strictly increasing in #[-3,+oo)#
Here is a graph which will help you see how this function behaves
graph{x^3e^x [-4.237, 1.922, -1.736, 1.34]}