On what interval isthe function f(x)=x^3.e^x increasing and diecreasing?

1 Answer
May 26, 2018

Decreasing in #(-oo,-3]# , Increasing in #[-3,+oo)#

Explanation:

#f(x)=x^3e^x# , #x##in##RR#

We notice that #f(0)=0#

#f'(x)=(x^3e^x)'=3x^2e^x+x^3e^x=x^2e^x(3+x)#

#f'(x)=0# #<=># #(x=0,x=-3)#

  • When #x##in##(-oo,-3)# for example for #x=-4# we get

#f'(-4)=-16/e^4<0#

  • When #x##in##(-3,0)# for example for #x=-2# we get

#f'(-2)=4/e^2>0#

  • When #x##in##(0,+oo)# for example for #x=1# we get

#f'(1)=4e>0#

#f# is continuous in #(-oo,-3]# and #f'(x)<0# when #x##in##(-oo,-3)# so #f# is strictly decreasing in #(-oo,-3]#

#f# is continuous in #[-3,0]# and #f'(x)>0# when #x##in##(-3,0)# so #f# is strictly increasing in #[-3,0]#

#f# is continuous in #[0,+oo)# and #f'(x)>0# when #x##in##(0,+oo)# so #f# is strictly increasing in #[0,+oo)#

#f# is increasing in #[-3,0)uu(0,+oo)# and #f# is continuous at #x=0# , hence #f# is strictly increasing in #[-3,+oo)#

Here is a graph which will help you see how this function behaves

graph{x^3e^x [-4.237, 1.922, -1.736, 1.34]}