How do you integrate ? 1/(x^2+9)^(1/2)

2 Answers
May 27, 2018

#y=int1/sqrt(x^2+9) dx#

put #x=3 tant##rArr t=tan^-1(x/3)#
Hence, #dx= 3sec^2tdt#

#y=int(3sec^2t)/sqrt(9tan^2t+9) dt#

#y=int(sec^2t)/sqrt(tan^2t+1) dt#

#y=int(sec^2t)/sqrt(sec^2t) dt#

#y=int(sec^2t)/(sect) dt#

#y=int(sect) dt#

#y=ln|sec t + tan t| + C#

#y=ln|sec( tan^-1(x/3) )+ tan (tan^-1(x/3))| + C#

#y=ln|sec( tan^-1(x/3) )+ x/3)| + C#

#y=ln|sqrt(1+x^2/9 )+ x/3| + C#

May 27, 2018

We know that,
#int1/sqrt(X^2+A^2) dX=ln|X+sqrt(X^2+A^2)|+c#
So,
#I=int1/(x^2+9)^(1/2) dx=int1/sqrt(x^2+3^2)dx#
#=>I=ln|x+sqrt(x^2+9)|+c#

Explanation:

#II^(nd) # method : Trig. subst.

#I=int1/(x^2+9)^(1/2) dx#

Take, #x=3tanu=>dx=3sec^2udu#

#and color(blue)(tanu=x/3#

So,

#I=int1/(9tan^2u+9)^(1/2) 3sec^2udu#

#=int(3sec^2u)/((9sec^2u)^(1/2))du#

#=int(3sec^2u)/(3secu)du#

#=intsecudu#

#=ln|secu+tanu|+c#

#=ln|sqrt(tan^2u+1)+tanu|+c# , where, #color(blue)(tanu=x/3#

#:.I=ln|sqrt(x^2/9+1)+x/3|+c#

#=ln|sqrt(x^2+9)/3+x/3|+c#

#=ln|(sqrt(x^2+9)+x)/3|+c#

#=ln|sqrt(x^2+9)+x|-ln3+c#

#=ln|x+sqrt(x^2+9)|+C,where, C=c-ln3#