How would you do this?

Prove that :

#tan^-1sqrt((x(x+y+z))/(yz))+tan^-1sqrt((y(x+y+z))/(zx))+tan^-1sqrt((z(x+y+z))/(xy))=π#

1 Answer
May 27, 2018

Please see below.

Explanation:

We have,

#tan^-1sqrt((x(x+y+z))/(yz))+tan^-1sqrt((y(x+y+z))/(zx))+tan^-1 sqrt((z(x+y+z))/(xy))=pi#

It is clear that, #x > 0 , y > 0 , and z > 0#

We take Left Hand Side,

#LHS=tan^-1sqrt((x(x+y+z))/(yz))+tan^-1sqrt((y(x+y+z))/(zx)) #

#color(white)(.........................)+tan^-1sqrt((z(x+y+z))/(xy))#

#LHS=tan^-1sqrt((x^2(x+y+z))/(xyz))+tan^-1sqrt((y^2(x+y+z))/( yzx)) #

#color(white)(.........................)+tan^-1sqrt((z^2(x+y+z))/(zxy))#

For simplicity we take ,

#color(brown)((x+y+z)/(xyz)=u^2 =>xyu^2=(x+y+z)/z=(x+y)/z+1...to(I)#

So,

#LHS=tan^-1sqrt(x^2u^2)+tan^-1sqrt(y^2u^2)+tan^-1sqrt(z^2u ^2)#

#LHS=tan^-1(xu)+tan^-1(yu)+tan^-1(zu)#

We know that,

#(II)color(red)(tan^-1X+tan^-1Y=pi+tan^-1((X+Y)/(1-XY)) , #
#when,XY > 1#

#X=xu and Y=yu=>X*Y=xuyu=color(brown)(xyu^2=(x+y)/z+1#

#i.e. X*Y >1#

Using #(II)# ,we get

#LHS=pi+tan^-1((xu+yu)/(1-xuyu))+tan^-1(zu) , tocolor(violet)(xuyu > 1)#

#LHS=pi+tan^-1((u(x+y))/(cancel1-(x+y)/z-cancel1))+tan^-1(zu)#

#LHS=pi+tan^-1(-(u(x+y))/((x+y)/z))+tan^-1(zu)#

#LHS=pi+tan^-1(-zu)+tan^-1(zu)#

#"Using "color(blue)( tan^-1(-X)=-tan^-1X# ,we get

#LHS=pi-tan^-1(zu)+tan^-1(zu)#

#LHS=pi#

#LHS=RHS#