How do you solve #10^ { x } = 75#?
1 Answer
May 28, 2018
Explanation:
#"using the "color(blue)"law of logarithms"#
#•color(white)(x)logx^nhArrnlogx#
#"take log of both sides"#
#"note that "logx-=log_(10)x" and "log_(10)10=1#
#log10^x=log75#
#xlog10=log75#
#x=log75/log10=log75~~1.875#