Solve the initial value problem y'=ky^2\lnx, with y(1)=-1?

My work:

dy/dx=ky^2\lnx
dy/y^2=k\lnxdx
\inty^-2dy=\intk\lnxdx=k\int\lnxdx

See answer below for the rest

1 Answer
May 30, 2018

Continued from \color(crimson)(\text(above))

Explanation:

\color(indianred)(dy/dx=ky^2\lnx)
\color(palevioletred)(dy/y^2=k\lnxdx)
\color(lightcoral)(\inty^-2dy=\intk\lnxdx=k\int\lnxdx)

the rest...
y^-1/-1=k[\lnx(x)-\int1dx]
-1/y=kx\lnx-kx+C
y=-1/(kx\lnx-kx+C)

Given y(1)=-1, then
-1=-1/(k(1)\ln(1)-k(1)+C)
-1=-1/(k(0)-k+C)
-1/-1=-k+C
1=-k+C, C=1+k

\thereforey=-1/(kx\lnx-kx+(1+k))