We can rewrite this expression as:
#5 xx 3 xx 5 xx sqrt(12) xx sqrt(18) xx sqrt(30) =>#
#15 xx 5 xx sqrt(12) xx sqrt(18) xx sqrt(30) =>#
#75 xx sqrt(12) xx sqrt(18) xx sqrt(30)#
We can now use this rule for radicals to multiply the radicals:
#sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))#
#75 xx sqrt(color(red)(12)) xx sqrt(color(blue)(18)) xx sqrt(color(green)(30)) =>#
#75 xx sqrt(color(red)(12) xx color(blue)(18) xx color(green)(30)) =>#
#75 xx sqrt(216 xx color(green)(30)) =>#
#75 xx sqrt(6480)#
We can rewrite this expression as:
#75 xx sqrt(16 xx 81 xx 5)#
Now, we can use the reverse of the rule above to simplify the radical:
#75 xx sqrt(color(red)(16) xx color(blue)(81) xx color(green)(5)) =>#
#75 xx sqrt(color(red)(16)) xx sqrt(color(blue)(81)) xx sqrt(color(green)(5)) =>#
#75 xx 4 xx 9 xx sqrt(5) =>#
#300 xx 9 xx sqrt(5) =>#
#2700 xx sqrt(5) =>#
#2700sqrt(5)#