What is #\int x/(1-sinx) dx# ?

2 Answers
Jun 2, 2018

#I=xtan(pi/4+x/2)-ln|sec(pi/4+x/2)|+c#

Explanation:

Here,

#I=intx/(1-sinx)dx#

#=intx/(1+cos(pi/2+x))dx...to[because cos(pi/2+theta)=-sintheta]#

#=intx/(2cos^2(pi/4+x/2))dx...to[because1+cosalpha=2cos^2(alpha/2)]#

#=int(x/2)/(cos^2(pi/4+x/2))dx#

Let,

#pi/4+x/2=u=>x/2=u-pi/4=>x=2u-pi/2=>dx=2du#

So,

#I=int(u-pi/4)/cos^2uxx2du#

#=int(2u-pi/2)sec^2udu#

#"Using "color(blue)"Integration by Parts :"#

#:.I=(2u-pi/2)intsec^2udu-int[(2-0)intsec^2udu]du#

#I=(2u-pi/2)*tanu-int2tanudu#

#=(2u-pi/2)tanu-2ln|secu|+c#

Subst. back , #u=pi/4+x/2# , we get

#I#=#[2(pi/4+x/2)-pi/2]tan(pi/4+x/2)-2ln|sec(pi/4+x/2)|+c#

#I=[pi/2+x-pi/2]tan(pi/4+x/2)-ln|sec(pi/4+x/2)|+c#

#I=xtan(pi/4+x/2)-ln|sec(pi/4+x/2)|+c#

Jun 2, 2018

#I=x(tanx+secx)-ln|secx|-ln|secx+tanx|+C#

Explanation:

Here,

#I=intx/(1-sinx)dx=int(x(1+sinx))/((1-sinx)(1+sinx))dx#

#:.I=int(x(1+sinx))/(1-sin^2x)dx#

#=int(x(1+sinx))/cos^2xdx#

#=intx(1/cos^2x+sinx/cos^2x)dx#

#=intx(sec^2x+secxtanx)dx#

#"Using "color(blue)"Integration by Parts :"#

#color(blue)(intu*vdx=uintvdx-int(u'intvdx)dx#

Let , #u=x and v=(sec^2x+secxtanx)#

#=>u'=1 and intvdx=(tanx+secx)+c#

So,

#I=x*(tanx+secx)-int1(tanx+secx)dx#

#=x(tanx+secx)-{ln|secx|+ln|secx+tanx|}+C#

#=x(tanx+secx)-ln|secx|-ln|secx+tanx|+C#