Given:
#cos(alpha) cos(beta-alpha) - sin(alpha) sin(beta-alpha) = cos(beta)#
Substitute #cos(beta-alpha) = cos(beta)cos(alpha)+sin(beta)sin(alpha)#:
#cos(alpha)(cos(beta)cos(alpha)+sin(beta)sin(alpha)) - sin(alpha) sin(beta-alpha) = cos(beta)#
Distribute #cos(alpha)# across the terms within the parentheses:
#cos(beta)cos^2(alpha)+sin(beta)sin(alpha)cos(alpha) - sin(alpha) sin(beta-alpha) = cos(beta)#
Substitute #sin(beta-alpha) = sin(beta)cos(alpha)-cos(beta)sin(alpha)#:
#cos(beta)cos^2(alpha)+sin(beta)sin(alpha)cos(alpha) - sin(alpha)(sin(beta)cos(alpha)-cos(beta)sin(alpha)) = cos(beta)#
Distribute #-sin(alpha)# across the terms within the parentheses:
#cos(beta)cos^2(alpha)+sin(beta)sin(alpha)cos(alpha) - sin(beta)sin(alpha)cos(alpha)+cos(beta)sin^2(alpha) = cos(beta)#
Please observe that the two terms in #color(red)("red")# sum to 0:
#cos(beta)cos^2(alpha)+color(red)(sin(beta)sin(alpha)cos(alpha) - sin(beta)sin(alpha)cos(alpha))+cos(beta)sin^2(alpha) = cos(beta)#
Rewriting without the two terms:
#cos(beta)cos^2(alpha)+cos(beta)sin^2(alpha) = cos(beta)#
Factor out #cos(beta)#:
#cos(beta)(cos^2(alpha)+sin^2(alpha)) = cos(beta)#
We know that #(cos^2(alpha)+sin^2(alpha)) = 1#, therefore, we need not write the factor:
#cos(beta) = cos(beta)# Q.E.D.