How do you solve #\frac { x - 2} { 3} + \frac { 2x + 1} { 4} = 1#?

2 Answers
Jun 6, 2018

Taking LCM we get,

Explanation:

#4( x-2) / 3 # + #3 (2x + 1 ) / 4#
#4x/12 - 8/12+ 6x/12 + 3 / 12 = 1 #

#4x - 8 +6x +3 = 12#

#10x - 5 = 12 #
#10x = 12 + 5 #
#10x = 17#

#x= 17/10 = 1.7#

Jun 6, 2018

#x=17/10#

Explanation:

#"multiply through by the lowest common multiple of"#
#"3 and 4 , that is 12"#

#cancel(12)^4xx(x-2)/cancel(3)^1+cancel(12)^3xx(2x+1)/cancel(4)^1=12xx1#

#4(x-2)+3(2x+1)=12larrcolor(blue)"distribute"#

#4x-8+6x+3=12#

#10x-5=12#

#"add 5 to both sides"#

#10x=17#

#"divide both sides by 10"#

#x=17/10#

#color(blue)"As a check"#

Substitute this value into the left side of the equation and if equal to the right side then it is the solution.

#(17/10-20/10)/3+(34/10+10/10)/4=-1/10+11/10=1#

#rArrx=17/10" is the solution"#