WARNING!! LONG ANSWER!!!!
First of All,
#ABCD# is a parallelogram.
That means the opposite sides of #ABCD# will be parallel and equal.
So, #AB = CD# and #AD = BC#.
Let's assume that The Co-ordinates of Point #A# is #(a, b)#.
Now,
#color(white)(xxx) AB = CD#
#rArr sqrt((a + 1)^2 + (b + 3)^2) = sqrt((-2 -1)^2 + (1 - 1)^2)# [Using the Distance Formula]
#rArr (a + 1)^2 + (b + 3)^2 = (-3)^2 + 0^2#
#rArr a^2 + 2a + 1 + b^2 + 6b + 9 = 9#
#rArr a^2 + 2a + b^2 + 6b = -1# [Transposing the constants to the R.H.S]..........................................................................(i)
Similarly,
#color(white)(xxx) AD = BC#
#rArr sqrt((a - 1)^2 + (b - 1)^2) = sqrt((-1 + 2)^2 + (-3 -1)^2)#
#rArr (a - 1)^2 + (b -1)^2 = 1^2 + (-4)^2#
#rArr a^2 - 2a + 1 + b^2 - 2b +1 = 1 + 16#
#rArr a^2 -2a + b^2 - 2b = 15#.......................................................(ii)
Now, Subtracting (ii) from (i),
#color(white)(xxx)cancel(a^2) + 2a + cancel(b^2) + 6y cancel(-a^2) + 2a cancel(- b^2) + 2b = -1 -15#
#rArr 4a + 8b = -16#
#rArr a + 2b = -4#...................................(iii)
Now, Join #EF#.
As, #E# and #F# are the mid-points of #DC# and #AB# respectively, #BF = FA# and #CE = ED#.
Now, In Quadrilateral #EFCB#,
#BF " | | "CE# and #BF = CE# [As #AB = CD#].
So, #EFCB# is a parallelogram.
Thus, #EF = BC#.
Co-ordinates of #F# = #((a -1)/2, (b -3)/2)# and #E = ((1-2)/2, (1 +1)/2) = (-1/2, 1)#
We will form another equation.
So,
#color(white)(xxx)EF = BC#
#rArr1/2sqrt((a -1)^2 + (b - 3)^2) = sqrt((-1 + 2)^2 + (-3 -1)^2)#
#rArr 1/4((a - 1)^2 + (b - 3)^2) = 1 + 16#
#rArr (a -1)^2 + (b - 3)^2 = 17 xx 4#
#rArr a^2 - 2a +1 + b^2 - 6b + 9 = 68#
#rArr a^2 - 2a + b^2 - 6b = 58#......................................(iv)
Now Subtract (iv) from (i)..
#color(white)(xxx) cancel(a^2) + 2a + cancel(b^2) + 6b cancel(- a^2) + 2a cancel(- b^2) + 6b = -1 - 58#
#rArr 4a + 12b = -59#
#rArr a + 3b = -59/4#......................(v)
Now, Subtract (iii) from (v).
#color(white)(xxx) cancel(a) + 3b cancel(- a) - 2b = -59/4 +4#
#rArr b = -43/4#
Now Putting #b = -43/4# in (iii).......
#a + 2(-43/4) = -4#
#rArr a = -4 + 43/2#
#rArr a =(-8 + 43 )/2#
#rArr a = 35/2#
Finally got the FREAKING Coordinates of #A = (35/2, -43/4)#. Oh Boy, I'm tired.
And, The Co-ordinates of #F# = #((a - 1)/2, (b - 3)/2) = ((35/2 - 1)/2,(-43/4 - 3)/2) = (33/4, -55/8)#
Let the Equation of #AE# be #y = m_1x + c_1#.
To Find the #m_1#, use the Point-Slope Form of the Line.
Point Slope Form = #m = (y_2 - y_1)/(x_2 - x_1)#
So, #m_1 = (1 + 43/4)/(-1/2 - 35/2) = (47/4)/(-18) = -47/72#.
And, #AE# has a point on it, #E#.
So The Equation of #AE# will be satisfied by #x = -1/2, y = 1#.
So,
#color(white)(xxx) y = m_1x + c_1#
#rArr y = -47/72x + c_1#
#rArr 1 = -47/144 + c_1# [Puttig #x = -1/2, y = 1#]
#rArrc_1 = (144 + 47)/144 = 191/144#
So, The Equation of #AE#:- #144y= -47x + 191#.
Similarly, Let the Equation of #DF# be #y = m_2x + c_2#.
Using the Point-Slope Form,
#m_2 = (1+55/8)/(1 - 33/4) = (63/8)/(-29/4) = -63/58#
Now,
#color(white)(xxx)y = (-63/58)x + c_2#
#rArr 1 = -63/58 + c_2# [Putting #y =1, x = 1#]
#rArr c_2 = (58 + 63)/58 = 121/58#
So, The Equation of #DF#:- #58y = -63x + 121#
YESSSSS!!!!!!!! FINALLY!!!!!
I pray to God that this helps.