Arc length of integration (1+8x)^1/2 from x=0 to x=1?
1 Answer
Jun 10, 2018
Explanation:
Let
#f(x)=sqrt(1+8x)#
#f'(x)=4/sqrt(1+8x)#
Arc length is given by:
#L=int_0^1sqrt(1+16/(1+8x))dx#
Apply the substitution
#L=4int_(1/4)^(3/4)sqrt(u^2+1)du#
Apply the substitution
#L=4intsec^3thetad theta#
This is a known integral. If you do not have it memorized, look it up in a table of integrals or apply integration by parts.
#L=2[secthetatantheta+ln|sectheta+tantheta|]#
Reverse the last substitution:
#L=2[usqrt(u^2+1)+ln|u+sqrt(u^2+1)|]_(1/4)^(3/4)#
Hence
#L=1/8(15-sqrt17)+2ln(8/(1+sqrt17))#
Simplify:
#L=1/8(15-sqrt17)+2ln((sqrt17-1)/2)#