I don't understand what I did wrong in my process? The question is: Find the point on the plane 6x − y + 6z = 60 nearest the origin. The answer is: < 360/73, -60/73, 360/73 > I got: < 6(360/73), -1(360/73), 6(360/73) >

#g(x)=6x-y+6z=60#
#gradg(x)=<6,-1,6>#

#D^2=(x-0)^2+(y-0)^2+(z-0)^2#
#6x-6z-60=y#
#D^2(x,z)=x^2+(6x+6z-60)^2+z^2#
#D^2(x,z)=37x^2+72xz-720x-720z+3600+37z^2#

#gradD^2(x,z)=<74x+72z-720,74z+72x-720>#
#gradD^2(x,z)=<37x+36z-360,37z+36x-360>#
#a) 37x+36z-360=0#
#b) 37z+36x-360=0#
#a)-b) = 37x-36x+36z-37z-360+360=0#
#a)-b) = x-z=0 -> x=z#

#x=z, -> 37(x)+36x-360=0 #
#x=360/73#

# < x,y,z > * <6,-1,6> = <6(360/73),-1(360/73),6(360/73)>#

1 Answer
Jun 10, 2018

See below

Explanation:

You're using a Lagrange multiplier:

Condition:

#g (x,y,z) = 6x − y + 6z - 60 = 0#

To be optimised:

#f(x,y,z) = D^2=(x-0)^2+(y-0)^2+(z-0)^2#

  • #nabla f = lambda nabla g#

#(2x, 2y, 2z) = lambda (6,-1,6)#

#implies bb( lambda = x/3 = - 2y = z/3 )#

#g (x,y,z) = 6(3 lambda) − (- lambda/2) + 6(3 lambda) - 60 = 0#

#implies bb(lambda = 120/73 )#

#(x,y,z) = (3 lambda,- lambda/2,3 lambda)#

# = (360/73,-60/73,360/73)#