How would I solve cos x * cos 2x=0 ?

2 Answers
Jun 10, 2018

#x=2npi+-pi/2# or #x=npi+-pi/4#

Explanation:

#cosx(cos2x)=0#
#=>" either " cosx=0=>x=2npi+-pi/2 " or "#
#cos2x=0=>2x=2npi+-pi/2" or "x=npi+-pi/4 #

Jun 10, 2018

#pi/2 + 2kpi; (3pi)/2 + 2kpi#
#pi/4 + kpi; (3pi)/4 + kpi#

Explanation:

cos x.cos 2x = 0
Either factor should be zero.
a. cos x = 0
Unit circle gives -->
#x = pi/2 + 2kpi#, and
#x = (3pi)/2 + 2kpi#
b. cos 2x = 0
Unit circle gives -->
1. #2x = pi/2 + 2kpi#
#x = pi/4 + kpi#
2. #2x = (3pi)/2 + 2kpi#
#x = (3pi)/4 + kpi#