How do you find an equation of the tangent line to the curve at the given point #y=3arccos(x/2) # and #(1,pi)#?

1 Answer

#y=-sqrt3*x+sqrt3+pi#

Explanation:

From the given curve #y=3*arccos(x/2)# and point #(1, pi)#

Find the first derivative by the formula

#d/dx(arccos u)=(-1)/sqrt(1-u^2)*d/dx(u)#

#(dy)/dx=d/dx(3*arccos(x/2))=3*(-1)/sqrt(1-(x/2)^2)*d/dx(x/2)#

#(dy)/dx=-3/(1/2*sqrt(4-x^2))*(1/2)#

at #x=1#

#(dy)/dx=-3/(1/2*sqrt(4-1^2))*(1/2)#

#(dy)/dx=-3/sqrt3=-sqrt3""""" "the" "slope"#

The Tangent line:

By using point-slope formula with slope #m=-sqrt3# and given point #(x_1, y_1)=(1, pi)#

#y-y_1=m*(x-x_1)#

#y-pi=-sqrt3*(x-1)#

#y=-sqrt3*x+sqrt3+pi#

I hope the explanation is useful...God bless..