What is #int_(0)^(1) (1+x)(1-x)^(1/2)dx #?

2 Answers
Jun 12, 2018

The answer is #=14/15#

Explanation:

Calculate the indefinite integral first.

Let #u=1-x#, #=>#, #du=-dx#

#1+x=1+1-u=2-u#

Therefore, the integral is

#I=int(1+x)sqrt(1-x)dx=int(u-2)sqrtudu#

#=int(u^(3/2-2u^(1/2)))du#

#=2/5u^(5/2)-4/3u^(3/2)#

#=2/5(1-x)^(5/2)-4/3(1-x)^(3/2)+C#

Calculate the definite integral

#int_0^1(1+x)sqrt(1-x)dx=[2/5(1-x)^(5/2)-4/3(1-x)^(3/2)]_0^1#

#=(0)-(2/5-4/3)#

#=14/15#

Jun 12, 2018

#14/15#

Explanation:

Using product rule treating (1+x) as first function and #(1-x)^(1/2# as 2nd function, the given integral would be

#(1+x) int (1-x)^(1/2) dx- int d/dx (1+x) int (1-x)^(1/2) dx#

=#(1+x) (-2/3) (1-x)^(3/2)-int (-2/3) (1-x)^(3/2) dx#

=# - 2/3 (1+x)(1-x)^(3/2) + 2/3 int (1-x)^(3/2) dx#

=# -2/3 (1+x)(1-x)^(3/2) + 2/3 (-2/5) (1-x)^(5/2)#

=#-2/3 (1+x) (1-x)^(3/2) - 4/15 (1-x)^(5/2) ] _0^1#

=#2/3 +4/15#

=#14/15#