How do you find the derivative of #(cos^2(x)sin^2(x))#?

1 Answer
Jun 13, 2018

#1/2sin4x#

Explanation:

#"differentiate using the "color(blue)"product/chain rules"#

#"given "y=f(x)g(x)" then"#

#dy/dx=f(x)g'(x)+g(x)f'(x)larrcolor(blue)"product rule"#

#f(x)=cos^2xrArrf'(x)=2cosx(-sinx)#

#color(white)(xxxxxxxxxxxxxxx)=-2sinxcosx#

#g(x)=sin^2xrArrg'(x)=2sinx(cosx)#

#color(white)(xxxxxxxxxxxxxxx)=2sinxcosx#

#d/dx(cos^2xsin^2x)#

#=cos^2x(2sinxcosx)+sin^2x(-2sinxcosx)#

#=(2sinxcosx)(cos^2x-sin^2x)#

#=sin2xcos2x=1/2sin4x#