How do you find the derivative of #(cos^2(x)sin^2(x))#?
1 Answer
Jun 13, 2018
Explanation:
#"differentiate using the "color(blue)"product/chain rules"#
#"given "y=f(x)g(x)" then"#
#dy/dx=f(x)g'(x)+g(x)f'(x)larrcolor(blue)"product rule"#
#f(x)=cos^2xrArrf'(x)=2cosx(-sinx)#
#color(white)(xxxxxxxxxxxxxxx)=-2sinxcosx#
#g(x)=sin^2xrArrg'(x)=2sinx(cosx)#
#color(white)(xxxxxxxxxxxxxxx)=2sinxcosx#
#d/dx(cos^2xsin^2x)#
#=cos^2x(2sinxcosx)+sin^2x(-2sinxcosx)#
#=(2sinxcosx)(cos^2x-sin^2x)#
#=sin2xcos2x=1/2sin4x#