X^2+8x+1<0 Inequality questions What will be the answer ? Plz tell

2 Answers
Jun 14, 2018

#-4-sqrt(15) < x < -4+sqrt(15)#

Explanation:

Complete the square:
#x^2+8x+1<0#
#(x+4)^2-15<0#
#(x+4)^2<15#
#|x+4| < sqrt(15)#

If #x+4>=0#, then #x<-4+sqrt(15)#.
If #x+4<0#, then #-x-4 < sqrt(15)rArrx > -4-sqrt(15)#

So we have two ranges for #x#:
#-4<=x<-4+sqrt(15)# and #-4-sqrt(15) < x < -4#.
We can combine these to make one range:
#-4-sqrt(15) < x < -4+sqrt(15)#

Numerically, to three significant figures:
#-7.87 < x < -0.127#

Jun 14, 2018

#(-4 - sqrt15, -4 + sqrt15)#

Explanation:

#f(x) = x^2 + 8x + 1 < 0#
First, solve the quadratic equation f(x) = 0, to find the 2 end-points (critical points).
#D = d^2 = b^2 - 4ac = 64 - 4 = 60# --> #d = +- 2sqrt15#
There are 2 real roots:
#x = -b/(2a) +- d/(2a) = - 8/2 +- 2sqrt15/2 = -4 +- sqrt15#
#x1 = -4 - sqrt15#, and #x2 = - 4 + sqrt15)#.
The graph of f(x) is a upward parabola (a > 0). Between the 2 real roots (x1 , x2), the graph is below the x-axis --> f (x) < 0.
The answer is the open interval:
#(-4 - sqrt15 , -4 + sqrt15)#