Find the exact value of the trigonometric expression given that sin(u) = − 3/5, where 3π/2 < u < 2π, and cos(v) = 15/17, where 0 < v < π/2. ? cos(u−v)

Find the exact value of the trigonometric expression given that
sin(u) = − 3/5, where 3π/2 < u < 2π, and cos(v) = 15/17,
where 0 < v < π/2. ?

cos(u−v)

1 Answer
Jun 15, 2018

#cos (u - v) = 36/85#

Explanation:

Trig identity:
cos (u - v) = cos u.cos v + sin u.sin v (1)
#sin u = - 3/5#. Find cos u
#cos^2 u = 1 - sin^2 u = 1 - 9/25 = 16/25#
#cos u = 4/5# (because u lies in Quadrant 4)
#cos v = 15/17#. Find sin v.
#sin^2 v = 1 - cos^2 v = 1 - 225/289 = 64/289#
#sin v = 8/17# (because v lies in Quadrant 1)
Replace these above values into identity (1)
#cos (u - v) = (15/17)(4/5) + (-3/5)(8/17) = 36/85#