If x = y - 1/y and y > 0, simplify, in terms of y: x + square root(x^2 + 4) ?

2 Answers
Jun 16, 2018

Substitute in and cancel out: #2y#

Explanation:

#x+sqrt(x^2+4)#
#x=y-1/y#

So
#y-1/y+sqrt((y-1/y)^2+4)#
#y-1/y+sqrt(y^2-2+1/y^2+4)#
#y-1/y+sqrt(y^2+2+1/y^2)#
#y-1/y+sqrt((y+1/y)^2)#
#y-1/y+y+1/y#
#2y#

Jun 16, 2018

#x+sqrt(x^2+4)=color(red)(2y)color(white)("xxxxxx")#...or at least that's what I got

Explanation:

If #x=color(lime)(y-1/y)# (with #y > 0#)
then
#color(white)("XXX")x+sqrt(x^2+4)=(color(lime)(y-1/y))+sqrt((color(lime)(y-1/y))^2+4)#

#color(white)("XXXXXXXXXXX")=color(magenta)(y-1/y)+sqrt((color(blue)(y^2 - 2 * y * 1/y+1/(y^2)))+4)#

#color(white)("XXXXXXXXXXX")=color(magenta)(y-1/y) +sqrt(color(brown)((y^2+2+1/(y^2)))#

#color(white)("XXXXXXXXXXX")=color(magenta)(y-1/y)+sqrt(color(brown)((y+1/y)^2))#

#color(white)("XXXXXXXXXXX")=color(magenta)(y-1/y)+color(brown)(y+1/y)#

#color(white)("XXXXXXXXXXX")=color(red)(2y)#