How can i find the the mean and variance of drawing cards? (details inside)

in a random deck of 52 regular cards, we begin to flip card by card.

note: regular deck, with 4 shapes(diamond,ace,..) and each shape has 13 cards(ace,2,3,.., queen, king) - regular cards.

how can i calculate the mean and variance of flipping cards until obtaining all the king and queen cards(8 cards totally, (king + queen) * 4 shapes(ace, diamonds,..)

thank you very much, really unsure about this one

1 Answer
Jun 18, 2018

#"The mean is "47.1111#
#"The variance is "23.0321#

Explanation:

#P("all K & Q in max n flips") = C(n,8)(8/52)(7/51)...(1/45)#
#= C(n,8) (8! 44!) / (52!)#
#= (C(n,8)) / (C(52,8))#

#"(we assume n >= 8 or otherwise C(n,k) = 0 if n < k)"#

#=> P("all K & Q in exactly n flips") = (C(n,8)-C(n-1,8))/(C(52,8))#

#=> E(n) = sum n*(C(n,8) - C(n-1,8))/(C(52,8))#
#= (1/(C(52,8))) sum (n*C(n,8) - n*C(n-1,8))#
#= (1/(C(52,8))) sum (n*C(n,8) - (n*(n-1)!)/(8! (n-9)!))#
#= (1/(C(52,8))) sum (n*C(n,8) - (n-8) (n!)/(8! (n-8)!))#
#= (1/(C(52,8))) sum (n*C(n,8) - (n-8)*C(n,8))#
#= (8/(C(52,8))) sum C(n,8)#
#= (1/(C(52,8)*7!)) sum n(n-1)(n-2)...(n-7)#
#= (1/(C(52,8)*7!)) Poly9(n)#

#"(it is a polynomial of degree 9 due to Faulhaber's formula)"#

#Poly9(n) = a_9 n^9 + a_8 n^8 + ... + a_1 n + a_0#

#Poly9(n) = 0, n < 8#
#=> a_0 = 0#
#=> a_9 + a_8 + ... + a_1 = 0#
#=> 512 a_9 + 256 a_8 + ... + 2 a_1 = 0#
#...#
#=> 7^9 a_9 + 7^8 a_8 + ... + 7 a_1 = 0#
#Poly9(8) = 8! = 40320#
#Poly9(9) = 9! + 8! = 403200#

#"The solution to this system of equations in 10 variables is"#

#a_9 = 1/9#
#a_8 = -3#
#a_7 = 98/3#
#a_6 = -182#
#a_5 = 1603/3#
#a_4 = -707#
#a_3 = -64/9#
#a_2 = 892#
#a_1 = -560#
#a_0 = 0#

#=> " mean = "(1/(C(52,8)*7!)) Poly9(52) = 47.111111#

#"The variance is even more calculation. I think it is too much"#
#"calculation for an exam. Still i give you the answer here :"#

#E(n^2) = (8/(C(52,8))) sum n * C(n,8)#
#= (1/(C(52,8)*7!)) sum n^2(n-1)(n-2)...(n-7)#
#= (1/(C(52,8)*7!)) Poly10(n)#

#Poly10(n) = a_10 n^10 + a_9 n^9 + a_8 n^8 + ... + a_1 n + a_0#

#Poly10(n) = 0, n < 8#

#Poly10(8) = 8*8! = 322560#
#Poly10(9) = 8*8! + 9*9! = 3588480#
#Poly10(10) = 8*8! + 9*9! +5*10! = 21732480#

#"The solution to the system of equations in 11 variables is here"#

#a_10 = 1/10#
#a_9 = -47/18#
#a_8 = 27#
#a_7 = -413/3#
#a_6 = 335.3#
#a_5 = -1253/6#
#a_4 = -572#
#a_3 = 7174/9#
#a_2 = 209.6#
#a_1 = -448#
#a_0 = 0#

#E(n^2) = (1/(C(52,8)*7!)) Poly10(52) = 2242.488888#
#=> " variance = "E(n^2) - (E(n))^2 = 23.0321#