How do you write the rational expression #(2x^2+7x-30)/(2x^2-15x+25)# in lowest terms?
1 Answer
Jun 18, 2018
Explanation:
#"factor the numerator/denominator and cancel common"#
#"factors"#
#color(blue)"numerator"#
#"using the a-c method to factor"#
#"the factors of the product "2xx-30=-60#
#"which sum to + 7 are + 12 and - 5"#
#"split the middle term using these factors"#
#2x^2+12x-5x-30larrcolor(blue)"factor by grouping"#
#=color(red)(2x)(x+6)color(red)(-5)(x+6)#
#=(x+6)(2x-5)#
#color(blue)"denominator"#
#"the factors of the product "2xx25=50#
#"which sum to - 15 are - 10 and - 5"#
#2x^2-10x-5x+25#
#=2x(x-5)-5(x-5)#
#=(x-5)(2x-5)#
#rArr(2x^2+7x-30)/(2x^2-15x+25)#
#=((x+6)cancel((2x-5)))/((x-5)cancel((2x-5)))=(x+6)/(x-5)#
#"with restriction "x!=5#