Let (abcd) be a four digit number (each letter represents one digit). If (abcd)+(abc)+(ab)+(a) = 2018, what is the product of a*b*c*d?
1 Answer
Jun 20, 2018
Explanation:
Given:
#"abcd"+"abc"+"ab"+"a" = 2018#
Note that:
#"abcd"+"abc"+"ab"+"a" ~~ "abcd"+"abc.d"+"ab.cd"+"a.bcd" = 1.111 * "abcd" #
So:
#"abcd" ~~ 2018/1.111 ~~ 1816.38#
We find:
#1816+181+18+1 = 2016#
So:
#"abcd" = 1816+2 = 1818#
Then:
#"a" * "b" * "c" * "d" = 1 * 8 * 1 * 8 = 64#
Alternative Method
Note that:
#"abcd" + "abc" + "ab" + "a" = "aaaa" + "bbb" + "cc" + "d"#
We find:
#2018-1111 = 907#
#907-888=19#
#19-11=8#
So:
#2018 = 1111+888+11+8 = 1818+181+18+1#
So:
#"abcd" = 1818#
and:
#"a" * "b" * "c" * "d" = 1 * 8 * 1 * 8 = 64#