Integrate (1)/(sqrt(1-x^2)) from -1 to 1?

1 Answer
Jun 20, 2018

#int_-1^1 1/sqrt(1-x^2)dx=pi#

Explanation:

#I=int_-1^1 1/sqrt(1-x^2)dx#
Let #x=sinu# so that #dx=cosudu#.
By using this substitution, we need to change the upper and lower bounds of the integral accordingly:
#-1=sinu# so that #u=-pi/2#
#1=sinu# so that #u=pi/2#
#I=int_(-pi/2)^(pi/2) 1/sqrt(1-sin^2u)cosudu#
Since #sin^2x+cos^2x=1#, #1-sin^2x=cos^2x# and we get
#I=int_(-pi/2)^(pi/2) 1/sqrt(cos^2u)cosudu#
#I=int_(-pi/2)^(pi/2)du#
#I=u|_(-pi/2)^(pi/2)#
#I=pi/2-(-pi/2)#
#I=pi#