State the amplitude and period of this function: y = 4sin(1/2)x ?

2 Answers
Jun 20, 2018

#"amplitude "=4," period "=4pi#

Explanation:

#"given the sine function in the form"#

#•color(white)(x)y=asinbx#

#"amplitude "=|a|," period "=(2pi)/b#

#"here "a=4,b=1/2#

#"amplitude "=|4|=4." period "=(2pi)/(1/2)=4pi#

Jun 20, 2018

Amplitude is 4

Period is #4pi#

Explanation:

The parent function is:

#y=sinx#

this function has a amplitude of #1# and a period of #2pi#

graph{y=sinx [-10, 10, -5, 5]}

Standard equation for sin is:

#y=asin(bx-c)+d#

a = amplitude (vertical stretch/compression)

b = horizontal stretch/compression

c = horizontal shift

d = vertical shift

#y=4sin(1/2)(x)#

#a = 4#

#b = 1/2#

So that cuts the input values and half doubling the period.