How do you solve #3| x + 9| - 6= 24#?

2 Answers
Jun 21, 2018

The solutions are #S={1, -19}#

Explanation:

This is an equation with absolute values.

#3|x+9|-6=24#

#=>#, #3|x+9|=24+6=30#

#=>#, #|x+9|=10#

Therefore,

#{(x+9=10),(-x-9=10):}#

#<=>#, #{(x=10-9=1),(x=-9-10=-19):}#

The solutions are #S={1, -19}#

graph{3|x+9|-30 [-35.5, 29.47, -20.1, 12.38]}

Jun 21, 2018

#x=-19" or "x=1#

Explanation:

#"the expression inside the absolute value can be positive"#
#"or negative"#

#"add 6 to both sides and divide by 3"#

#3|x+9|=24+6=30#

#|x+9|=30/3=10#

#color(magenta)"positive expression"#

#x+9=10#

#"subtract 9 from both sides"#

#x=10-9=1#

#color(magenta)"negative expression"#

#-(x+9)=10#

#-x-9=10#

#"add 9 to both sides"#

#-x=10+9=19rArrx=-19#

#color(blue)"As a check"#

Substitute these values into the left side of the equation and if equal to the right side then they are the solutions.

#x=1#

#3|10|-6=(3xx10)-6=30-6=24#

#x=-19#

#3|-10|-6=30-6=24#

#x=-19" or "x=1" are the solutions"#