How do you find cos 11pi/12?
2 Answers
Explanation:
#"using the "color(blue)"addition formula for cos"#
#•color(white)(x)cos(x+y)=cosxcosy-sinxsiny#
#"note that "(11pi)/12=(2pi)/3+pi/4#
#cos((11pi)/12)=cos((2pi)/3+pi/4)#
#=cos((2pi)/3)cos(pi/4)-sin((2pi)/3)sin(pi/4)#
#=-cos(pi/3)cos(pi/4)-sin(pi/3)sin(pi/4)#
#=(-1/2xxsqrt2/2)-(sqrt3/2xxsqrt2/2)#
#=-sqrt2/4-sqrt6/4#
#=-1/4(sqrt2+sqrt6)#
Explanation:
Find
In this case,
Finally,