Solve equation: (Is my answer correct ?)
#sin^2x + sin^2 2x = sin^2 3x#
#sin^2x + (2sinxcosx)^2 = [sinx(3-4sin^2x)] #
#sin^2x +4sin^2xcos^2x = sin^2x(9-24sin^2x +16sin^4x) #
#sin^2x +4sin^2xcos^2x = 16sin^6x - 24sin^4x +9sin^2x#
#4sin^2x(4sin^4x - 6sin^2x +2 - cos^2x) =0 #
#sin^2x = 0#
#x=kπ#
⋁ #4sin^4x - 6sin^2x+2-1+sin^2x=0 #
#4sin^4x - 5sin^2x +1 =0#
#sin^2x = t#
#4t^2-5t+1=0 #
∆=9
#t_1 = 1/4# and #t_2 =1#
so...
for #t_1 = 1/4# :
#1/2 = sinx# or #-1/2 = sinx #
#x=π/6 + 2kπ or x=-π/6 + 2kπ#
for #t_2 = 1# :
#sinx =1 or sinx =-1#
#x=π/2+2kπ or x=-π/2+2kπ #
# x=π/6 + kπ ⋁ x=π/2 + kπ#
⋁
∆=9
so...
for
for
1 Answer
Explanation:
Either factor should be zero
.
a.
1.
2.
b.
Calculator and unit circle give -->
1.