What is the arc length of #f(x) = x^2-ln(x^2) # on #x in [1,3] #?

1 Answer
Jun 28, 2018

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-ln((4sqrt265-55)/45)# units.

Explanation:

#f(x)=x^2-ln(x^2)=x^2-2lnx#

#f'(x)=2x-2/x#

Arc length is given by:

#L=int_1^3sqrt(1+(2x-2/x)^2)dx#

Expand and simplify:

#L=int_1^3sqrt(4x^4-7x^2+4)/xdx#

For ease of algebra, apply the substitution #x^2=u#:

#L=1/2int_1^9sqrt(4u^2-7u+4)/udu#

Multiply numerator and denominator by #sqrt(4u^2-7u+4)#

#L=1/2int_1^9(4u^2-7u+4)/(usqrt(4u^2-7u+4))du#

Rearrange so that the numerator contains the derivative of the denominator:

#L=1/4int_1^9((8u-7)-(7-8/u))/sqrt(4u^2-7u+4)du#

Integration is distributive:

#L=1/4int_1^9(8u-7)/sqrt(4u^2-7u+4)du-1/4int_1^9(7-8/u)/sqrt(4u^2-7u+4)du#

Complete the square in the square root:

#L=1/2[sqrt(4u^2-7u+4)]_ 1^9-int_1^9(7-8/u)/sqrt((8u-7)^2+15)du#

Apply the substitution #8u-7=sqrt15tantheta#:

#L=1/2(sqrt265-1)-int((7-64/(sqrt15tantheta+7)))/(sqrt15sectheta)(sqrt15/8sec^2thetad theta)#

Simplify and distribute:

#L=1/2(sqrt265-1)-7/8intsecthetad theta+8intsectheta/(sqrt15tantheta+7)d theta#

Apply the appropriate double-angle Trigonometric identities:

#L=1/2(sqrt265-1)-7/8[ln|sqrt15sectheta+sqrt15tantheta|]+8intsec^2(theta/2)/(2sqrt15tan(theta/2)+7(1-tan^2(theta/2)))d theta#

Rearrange:

#L=1/2(sqrt265-1)-7/8[ln|sqrt((8u-7)^2+15)+8u-7|]_ 1^9-8intsec^2(theta/2)/(7tan^2(theta/2)-2sqrt15tan(theta/2)-7)d theta#

Complete the square in the denominator:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-56intsec^2(theta/2)/((7tan(theta/2)-sqrt15)^2-64)d theta#

Apply the difference of squares:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-56intsec^2(theta/2)/((7tan(theta/2)-sqrt15-8)(7tan(theta/2)-sqrt15+8))d theta#

Apply partial fraction decomposition:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-7/2int(1/(7tan(theta/2)-sqrt15-8)-1/(7tan(theta/2)-sqrt15+8))sec^2(theta/2)d theta#

Integrate term by term:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-[ln|7tan(theta/2)-sqrt15-8|-ln|7tan(theta/2)-sqrt15+8|]#

Apply the appropriate half-angle Trigonometric identity:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-[ln|(7sqrt15tantheta-(sqrt15+8)(sqrt15+sqrt15sectheta))/(7sqrt15tantheta-(sqrt15-8)(sqrt15+sqrt15sectheta))|]#

Reverse the last substitution:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-[ln|(7(8u-7)-(sqrt15+8)(sqrt15+sqrt((8u-7)^2+15)))/(7(8u-7)-(sqrt15-8)(sqrt15+sqrt((8u-7)^2+15)))|]_1^9#

Insert the limits of integration:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-ln|(455-(sqrt15+8)(sqrt15+4sqrt265))/(455-(sqrt15-8)(sqrt15+4sqrt265))*(7-(sqrt15-8)(sqrt15+4))/(7-(sqrt15+8)(sqrt15+4))|#

Simplify:

#L=1/2(sqrt265-1)-7/8ln((4sqrt265+65)/5)-ln((4sqrt265-55)/45)#