If #x^3 - ( x+1) ^2 = 2001# then what is the value of x?

2 Answers
Jun 30, 2018

#x=13" "# or #" "x = -6+-sqrt(118)i#

Explanation:

Given:

#x^3-(x+1)^2=2001#

Multiply out the left hand side to get:

#x^3-x^2-2x-1=2001#

Subtract #2001# from both sides to get:

#x^3-x^2-2x-2002 = 0#

Note that the signs of the coefficients are in the pattern #+ - - -#. With one change of signs, Descartes' Rule of Signs tells us that this cubic equation has exactly one positive real solution.

The prime factorisation of #2002# is:

#2002 = 2 * 7 * 11 * 13#

So the positive factors of #2002# are:

#1, 2, 7, 11, 13, 14, 22, 26, 77, 91, 143, 154, 182, 286, 1001, 2002#

We could try each in turn, but note that #root(3)(2002) ~~ 12.6#, so try #13# first and find:

#(color(blue)(13))^3-(color(blue)(13))^2-2(color(blue)(13))-2002 = 2197-169-26-2002 = 0#

So #x=13# is a solution and #(x-13)# a factor:

#0 = x^3-x^2-2x-2002 = (x-13)(x^2+12x+154)#

The remaining quadratic has no real zeros, as we can see from its discriminant, but we can factor it using complex numbers:

#0 = x^2+12x+154#

#color(white)(0) = x^2+12x+36+118#

#color(white)(0) = (x+6)^2+(sqrt(118))^2#

#color(white)(0) = (x+6)^2-(sqrt(118)i)^2#

#color(white)(0) = ((x+6)-sqrt(118)i)((x+6)+sqrt(118)i)#

#color(white)(0) = (x+6-sqrt(118)i)(x+6+sqrt(118)i)#

Hence roots #x = -6+-sqrt(118)i#

Jun 30, 2018

#x=13#

Explanation:

Here,

#x^3-(x+1)^2=2001#

#=>x^3-x^2-2x-1=2001#

#=>x^3-x^2-2x-2002=0#

#=>x^3-2197-x^2+169-2x+26=0#

#=>(x^3-13^3)-(x^2-13^2)-2(x-13)=0#

#=>(x-13)(x^2+13x+169)-(x-13)(x+13)#

#color(white)(..........................................................)-2(x-13)=0#

#=>(x-13)[x^2+13x+169-x-13-2]=0#

#=>(x-13)[x^2+12x+154]=0#

#=>x-13=0 or x^2+12x+154=0#

#(i)x-13=0=>x=13#

#(ii)x^2+12x+154=0=>a=1 ,b=12 ,c=154#

#triangle=b^2-4ac=144-4(1)(154)=144-616#

#=>triangle=-472 <0=>x!inRR# ,but # x in CC#

Hence, #x=13#

Note:
#x^3-(x+1)^2=2197-196#
#x^3-(x+1)^2=(13)^3-(14)^2#
#x^3-(x+1)^2=(13)^3-(13+1)^2=>x=13#

For #x inCC# please see answer below given by @George C.