How do you solve #-3( x - 3) \geq 9- 3x#?

2 Answers

#\forall \ x\in \mathbb R#

Explanation:

Given that

#-3(x-3)\ge9-3x#

#-3x+9\ge9-3x#

#-3x\ge-3x#

#-x\ge-x#

#x\lex#

Above inequality is true for all real #x#

Jul 4, 2018

All values of #x#

Explanation:

We can distribute the #-3# on the left to get

#-3x+9>=9-3x#

Subtracting #9# from both sides gives us

#-3x>=-3x#

We can divide both sides by #-3# to get

#x<=x#

All solutions to this inequality makes this true.

Hope this helps!