How do you solve #cos^2x=3/4#? Which solution is correct?

#cos^2x=3/4#
This is already covered here:
https://socratic.org/questions/how-do-you-solve-cos-2x-3-4
But my solution:
1. #cosx=(sqrt3)/2#
2. #cosx=-(sqrt3)/2#
So:
1. #arccos((sqrt3)/2)+2pik=pi/6+2pik#
#-arccos((sqrt3)/2)+2pik=-pi/6+2pik#
2. #arccos(-(sqrt3)/2)+2pik=pi-arccos((sqrt3)/2)+2pik= pi-pi/6+2pik=(5pi)/6+pik#
#-arccos(-(sqrt3)/2)+2pik=pi+arccos((sqrt3)/2)+2pik=pi+pi/6+2pik=(7pi)/6+2pik#
Which solution is correct? My or here:
https://socratic.org/questions/how-do-you-solve-cos-2x-3-4

3 Answers

You should consider two cases as follows

(1) #\cos x=\sqrt3/2=\cos(\pi/6)#

#x=2k\pi\pm\pi/6#

Where k is any integer

(2) #\cos x=-\sqrt3/2=\cos({5\pi}/6)#

#x=2k\pi\pm{5\pi}/6#

Where k is any integer

Method-2 In general,

#\cos^2\theta=\cos^2\alpha# has solutions

#\theta=n\pi\pm\alpha#

Where, n is any integer

Hence, the given trig. equation has following solutions

#\cos^2x=3/4#

#\cos^2x=(\sqrt3/2)^2#

#\cos^2x=(\cos(\pi/6))^2#

#\cos^2x=\cos^2(\pi/6)#

#x=n\pi\pm \pi/6#

Where, #n# is any integer i.e. #n=0, \pm1, \pm2, \pm3, \ldots#

Jul 4, 2018

#color(blue)(x=2kpi+-pi/6 ,kinZZ# or #color(blue)(x=2kpi+-(5pi)/6 ,kinZZ#

Explanation:

Here, #cos^2x=3/4=>cosx=+-sqrt3/2#
#"If"# #cosx=a, |a|<=1# ,#"then the general solution of eqn. is :"#

#color(blue)(x=2kpi+-alpha, kinZZandalpha=arc cos(a)#
#(i)cosx=sqrt3/2 >0#
#=>alpha=arc cos(sqrt3/2)=arc cos(cos(pi/6))=pi/6#
#color(blue)(x=2kpi+-pi/6 ,kinZZ#
#(i)cosx=-sqrt3/2 < 0#
#=>alpha=arc cos(-sqrt3/2)=pi-arc cos(sqrt3/2)#=#pi-pi/6#=#(5pi)/6#
#color(blue)(x=2kpi+-(5pi)/6 ,kinZZ#
......................................................................................................
You have to think on red color.

Compare your answer with red color to correct your answer.

#2. arc cos(-sqrt3/2)+2pik#
#=pi-arccos(sqrt3/2)+2pik=pi-pi/6+2pik=(5pi)/6+color(red)(pik#

So, replace , #color(red)(pik to2pik ,k inZZ#

#and arc cos(-sqrt3/2)=pi-arc cos(sqrt3/2)#

#=>color(red)(-){arc cos(-sqrt3/2)}=color(red)(-){pi-arc cos(sqrt3/2)}#
#=color(red)(-pi+arccos(sqrt3/2)=-pi+pi/6=(-6pi+pi)/6=-(5pi)/6#

So, Replace , #color(red)((7pi)/6 to-(5pi)/6#

Also, remember to write #: color(red)(kinZZto# it is necessary.

Jul 5, 2018

#x=pi/6+-pin#
#x=(5pi)/6+-pin#
Where #n# is an element of all integers
#n∈Z#

Explanation:

An easy way to approach this would be to use the unit circle instead of using inverse trig:

#cosx=+-sqrt3/2#

Now we know using the unit circle, the solutions are #pi/6, (5pi)/6, (7pi)/6, (11pi)/6#

So the easiest way to write the solution set including all solutions would be:

#x=pi/6+-pin#
#x=(5pi)/6+-pin#

Where #n# is an element of all integers
#n∈Z#

graph{(cosx)^2-3/4 [-10, 10, -5, 5]}