Eight drops of water.each radius 2mm are falling through air at a terminal velocity of 8cm/sec If they coalesce to form a single drop the terminal velocity of the combined drop will be?

1 Answer

#32# cm/sec

Explanation:

For small Reynold number, the viscous force on the small sphere of radius #r# moving with a velocity #v# in a fluid of dynamic viscosity #\mu# is given by Stoke's law as

#F_v=6\pi\mu r v#

For terminal or critical velocity #v_c# to achieve, the viscous force on the small sphere (density #\rho_s#) must be equal to the net weight of body in the fluid of density #\rho_f# hence we have

#F_v=mg-\text{Buoyant force}#

#6\pi\mur v_c={4\pi}/3 r^3(\rho_s-\rho_f)g#

#v_c=\frac{2}{9}\frac{(\rho_s-\rho_f)gr^2}{mu}#

#v_c\propr^2#

the above relation shows that the terminal velocity #v_c# of the sphere is directly proportional to the square of radius #r# keeping other parameters constant

Now, 8 identical water drops each of radius #r_1=2\ mm# collapse to form a single big drop of radius #r_2#

Now, by the conservation of volume, volume of big drop of water (radius #r_2#) must be equal to the volume of 8 identical water drops #(r_1=2mm )# then we have

#\frac{4\pi}{3}r_2^2=8\times \frac{4\pi}{3}r_1^2#

#r_2=2r_1#

#r_2=2(2)=4\ mm#

From, terminal velocity relation (derived above), we know

#v_c\propr^2#

#\frac{(v_c)_2}{(v_c)1}=\frac{r_2^2}{r_1^2}#

#\frac{(v_c)_2}{8}=\frac{4^2}{2^2}#

#\frac{(v_c)_2}{8}=4#

#(v_c)_2=32\ \text{cm/sec}#