Defining the wholesome inverse operator #(sin)^(-1)# by #Y = (sin)^(-1)(X) = k pi + (-1)^k sin^(-1)X, k= 0, +-1, +-2, +-3,...#, how do you find the points of inflexion of the FCS # y = ((sin)^(-1))_(fcs) (x; 1) = (sin)^(-1)(x+y)?#

1 Answer
Jul 8, 2018

The ( tangent-crossing-curve ) points of inflexion are
#+- (-k pi, k pi ), k = 0, 1, 2, 3, ...# See the graph, for these plots. Please do not edit my answer. You could give another answer.

Explanation:

Currently, there seems to be no provision in Calculators, for the

piecewise ( one x - many answer ) output, for the wholesome

inversion #(sin)^(-1)x#.

#y = ((sin)^(-1))_(fcs)( x; 1 ) #

#= ( sin )^(-1)( x + (sin^(-1))( x +(sin^(-1))( x + ...)))#

# = (sin)^(-1)( x + y ), x + y in [ -1, 1 ]#.

# = k pi + (-1)^ksin^(-1)( x + y ), k = 0, +-1, +-2, +-3, ...#, in the

respective #y in [ k pi - pi/2, kpi + pi/2].#

Inversely,

#x = (-1)^k sin ( y - k pi ) - y , y in [ k pi - pi/2, kpi + pi/2]#

#= (-1)^k sin y cos k pi - y#

#= sin y - y#.

It is easy to prove that

#(d^2x)/dy^2 = - sin y = 0# and

#(d^3x)/(dy^3) = - cos y ne 0#, at #+-(-kpi, kpi), k = 0, 1, 2, 3, ...#.

So,

the points of inflexion (POI) are #+-(-kpi, kpi), k = 0, 2, 3. ..#

The graph of x = sin y - y includes the ( y-restricted ) inverse of

#y = ((sin)^(-1))_(fcs)( x; 1 )#.

Graph of #y = ((sin)^(-1))_(fcs)( x; 1 ), wth POI plots.
graph{(x-sin y+y)(x+y)(x^2+y^2 -.01)((x+3.14)^2+(y-3.14)^2-.01) ((x-3.14)^2+(y+3.14)^2-.01)=0[-10 10 -5 5]}

graph{(x-sin y+y)(x+y)(x^2+y^2 -.01)((x+3.14)^2+(y-3.14)^2-.01) ((x-3.14)^2+(y+3.14)^2-.01)((x+y)^2-1)=0[-20 20 -10 10]}
This graph includes the alignment of the points of inflexion along

x + y = 0, the limits #x + y = +-1# for the graph and

the POI #+-(-kpi, kpi), k = 0, 1.#
Graph of #y = (sin^(-1))_(fcs)( x; 1 )#, conventional #y in [-pi/2, pi/2]#
graph{x-sin y+y=0[-3.14 3.14 -1.57 1.57]}

The graphs are on uniform scale.