A triangle has corners at #(4 ,6 )#, #(2 ,9 )#, and #(7 ,5 )#. What is the area of the triangle's circumscribed circle?

1 Answer
Jul 11, 2018

The area of the triangle's circumscribed circle#=Delta=85.4329# sq. units.

Explanation:

Let #triangleABC " be the triangle with corners at"#

#A(4,6) ,B(2,9) and C(7,5)#

enter image source here

Using Distance formula ,we get

#a=BC=sqrt((2-7)^2+(9-5)^2)=sqrt(25+16)=sqrt41#

#b=CA=sqrt((4-7)^2+(6-5)^2)=sqrt(9+1)=sqrt10#

#c=AB=sqrt((4-2)^2+(6-9)^2)=sqrt(4+9)=sqrt13#

Using cosine Formula ,we get

#cosB=(c^2+a^2-b^2)/(2ca)=(13+41-10)/(2sqrt13sqrt41)=22/(sqrt533#

We know that,

#sin^2B=1-cos^2B#

#=>sin^2B=1-484/533=49/533#

#=>sinB=7/sqrt533to[because Bin(0 ^circ,180^circ)]#

Using sine formula:we get

#b/sinB=2R=>R=b/(2sinB)#

#=>R=sqrt10/(2 (7/sqrt533))=(sqrt10xxsqrt533)/(2*7)~~5.2148#

So , the area of the triangle's circumscribed circle is:

#Delta=piR^2=pi*(5.2148)^2~~85.4329 ,sq.units#