How do you determine if #y= 3 + 2x# is an even or odd function?

1 Answer
Jul 12, 2018

#color(blue)("Neither")#

Explanation:

For odd and even functions we have:

A function is even if:

#f(x)=f(-x)#

A function is odd if:

#-f(x)=f(-x)#

If none of these is true then the function is neither odd nor even.

So:

#f(x)=f(-x)#

#3+2x=3+2(-x)#

#3+2x=3-2x# This is false, the function is not even.

#-f(x)=f(-x)#

#-(3+2x)=3+2(-x)#

#-3+2x=3-2x# This is also false. The function is neither odd nor even.