Prove using the first principals that #d/dx(lnx) =1/x# ?

1 Answer
Jul 13, 2018

#d/(dx)(lnx)=1/x#

Explanation:

We know that ,

#color(red)((1)lnX-lnY=ln(X/Y),where, X and Y inRR^+#

#color(blue)((2)n*lnX=ln(X^n) ,where , X inRR^+ and n in RR#

Let ,

#f(x)=lnx=>f(x+h)=ln(x+h)#

Differentiating using First principles :

#color(green)(f'(x)=lim_(hto0)(f(x+h)-f(x))/h)#

#=>f'(x)=lim_(hto0)(ln(x+h)-lnx)/h#

#=>f'(x)=lim_(hto0)1/h{color(red)(ln(x+h)-lnx)}#

#=>f'(x)=lim_(hto0)1/h{color(red)(ln((x+h)/x))}tocolor(red)(Apply (1)#

#=>f'(x)=lim_(hto0)1/hln(1+h/x)#

#=>f'(x)=lim_(hto0)1/x*color(blue)(x/hln(1+h/x)#

#=>f'(x)=1/x*lim_(hto0)color(blue)(ln(1+h/x)^(x/h)toApply(2)#

#=>f'(x)=1/x*ln[lim_(hto0)(1+h/x)^(x/h)]#

Now, #color(brown)(hto0 =>h/xto0 and h/x=n=>lim_(nto0)(1+n)^(1/n)=e#

So,

#f'(x)=1/x*ln[color(brown)(lim_(h/xto0)(1+h/x)^(x/h))]#

#=>f'(x)=1/x*ln[color(brown)(e)] ,where, lne=1#

#=>f'(x)=1/x#

Hence , #d/(dx)(lnx)=1/x#