How do you find the integral of #tanˉ¹(2x) dx#?

1 Answer
Jul 14, 2018

The answer is #=xarctan(2x)-1/4ln(4x^2+1)+C#

Explanation:

Perform a substitution

#u=2x#, #=>#, #du=2dx#

The integral is

#I=intarctan(2x)dx#

#=1/2intarctanudu#

Perform an integration by parts

#intfg'dx=fg-intf'gdx#

Here,

#f=arctanu#, #=>#, #f'=1/(u^2+1)#

#g'=1#, #=>#, #g=u#

Therefore,

#I=1/2u*arctanu-1/2int(udu)/(u^2+1)#

#=1/2u*arctanu-1/4ln(u^2+1)#

#=1/2*2xarctan(2x)-1/4ln(4x^2+1)+C#

#=xarctan(2x)-1/4ln(4x^2+1)+C#