Points A and B are at #(2 ,2 )# and #(3 ,7 )#, respectively. Point A is rotated counterclockwise about the origin by #pi/2 # and dilated about point C by a factor of #3 #. If point A is now at point B, what are the coordinates of point C?

2 Answers
Jul 15, 2018

#color(maroon)("Coordinates of point C " (-9/2, -1/2)#

Explanation:

#A(2,2), B(3,7), "counterclockwise rotation " #pi/2#, "dilation factor" 3#

https://teacher.desmos.com/activitybuilder/custom/566b16af914c731d06ef1953

New coordinates of A after #(3pi)/2# counterclockwise rotation

#A(2,2) rarr A' (-2,2)#

#vec (BC) = (3) vec(A'C)#

#b - c = (3)a' - (3)c#

#2c = (3)a' - b#

#c = (3/2)a' -(1/2) b#

#C((x),(y)) = (3/2)((-2),(2)) - (1/2) ((3),(7)) = ((-9/2),(-1/2))#

Jul 15, 2018

#C=(-9/2,-1/2)#

Explanation:

#"under a counterclockwise rotation about the origin of "pi/2#

#• " a point "(x,y)to(-y,x)#

#A(2,2)toA'(-2,2)" where A' is the image of A "#

#vec(CB)=color(red)(3)vec(CA')#

#ulb-ulc=3(ula'-ulc)#

#ulb-ulc=3ula'-3ulc#

#2ulc=3ula'-ulb#

#color(white)(2ulc)=3((-2),(2))-((3),(7))#

#color(white)(2ulc)=((-6),(6))-((3),(7))=((-9),(-1))#

#ulc=1/2((-9),(-1))=((-9/2),(-1/2))#

#rArrC=(-9/2,-1/2)#